首页> 外文OA文献 >Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.)
【2h】

Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.)

机译:小麦中的亚基因组染色体行走:450 kb物理重叠群 在小麦中。 六倍体的Lr10抗性基因座 小麦(Triticum aestivum L.)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.
机译:对于许多农业上重要的植物基因,只有它们在遗传图谱上的位置是已知的。在缺乏有效的转座子标记系统的情况下,必须通过基于图的克隆来分离此类基因。在面包小麦中,基因组为六倍体,大小为1.6×1010 bp,包含80%以上的重复序列。到目前为止,这种基因组的复杂性还不允许染色体行走和位置克隆。在这里,我们证明在二倍体小麦小麦单粒小麦(Am基因组)中使用细菌人工染色体(BAC)克隆进行染色体漫步是可能的。 BAC末端序列大多数是重复的,不能用于第一步。通过BAC的低通DNA测序有效地鉴定了与稀有的低拷贝序列相对应的新探针。经过两个步行步骤,在1AmS染色体上产生了450 kb的物理重叠群。从BAC重叠群中获得的探针的遗传图谱显示,单核球菌的物理图谱与1AS染色体上的小麦小麦的遗传图谱之间具有完美的共线性。重叠群在遗传上跨越面包小麦中的Lr10叶锈病抗性基因座,其0.13厘摩对应于最接近的侧翼标记之间的300 kb。遗传距离与物理距离的比较显示,在重叠群的350 kb范围内存在较大差异。物理重叠群现在可以用于分离面包小麦中的直系同源区域。因此,小麦中的亚基因组染色体行走可产生较大的物理重叠群,并使基因组区域饱和,以支持位置克隆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号